Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

R. Hema, ${ }^{\text {a }}$ V. Parthasarathi, ${ }^{\text {a }}{ }^{*}$
 K. Ravikumar, ${ }^{\text {b }}$ B. Sridhar ${ }^{\text {b }}$ and
 K. Pandiarajan ${ }^{\text {c }}$

${ }^{\text {a }}$ School of Physics, Bharathidasan University, Tiruchirappalli 620 024, India, ${ }^{\text {b }}$ Laboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India, and ${ }^{\text {c }}$ Department of Chemistry, Annamalai University, Annamalai Nagar 608 002, India

Correspondence e-mail: vpsarati@yahoo.com

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.035$
$w R$ factor $=0.102$
Data-to-parameter ratio $=13.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Ethyl (E)-2-benzoyl-3-phenylpropenoate

In the title molecule, $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}$, the configuaration with respect to the $\mathrm{C}=\mathrm{C}$ double bond is E. The benzoyl group is rotated out of the mean plane through the rest of the molecule by 88.31 (4) $)^{\circ}$. In the crystal structure, molecules are linked by weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions to form twodimensional sheets.

Comment

A novel derivative of ethyl 2-propenoate suppresses carcinogenesis and inducible nitric oxide synthase in rat tongue (Tanaka et al., 2003). The potential of ethyl 2-methyl-2propenoate derivatives to produce neurotoxicity has been investigated in adult male Spague-Dawley rats (Abou-Donia et al., 2000). The X-ray crystal structure determination of the title compound, (I), has been undertaken to investigate the stereochemistry of the molecule and the conformational changes resulting from the presence of various substituents in the ethyl propenoate group, and the results are presented here.

(I)

In the title compound, (I), the $\mathrm{C} 2=\mathrm{C} 3$ bond length [1.340 (2) \AA] is comparable with the unweighted mean double-bond distance $[1.340(13) \AA$] for $\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$ groups (Allen et al., 1987). It also corresponds to the $\mathrm{C} 2=\mathrm{C} 3$ bond [1.347 (2) Å] in a similar related structure, methyl $(Z)-3-[(4,6-$ dimethyl-2-pyrimidinyl)amino]-2-[(methoxy)(methylthio)methyleneamino]propenoate, (II) (Sinur et al., 1994). In two more related structures reported in the same paper, namely ethyl (E)-2-benzoyl-3-(dimethylamino)propenoate, (III), and ethyl (Z)-2-benzoyl-3-[(3-nitrophenyl)amino]propenoate, (IV) (Sinur et al., 1994), the $\mathrm{C} 2=\mathrm{C} 3$ distances were reported as 1.385 (2) and 1.375 (2) \AA, respectively.

The $\mathrm{C} 1-\mathrm{C} 2$ bond [1.482 (2) \AA] in (I) is slightly longer than the conjugated $\mathrm{Csp}{ }^{2}-\mathrm{Csp}{ }^{2}$ bond length $[1.464$ (17) \AA; Allen et al., 1987], while in (II), (III) and (IV), the C1-C2 distances

Figure 1
A view of (I), with displacement ellipsoids drawn at the 50% probability level and H atoms shown as small spheres of arbitrary radii.

Figure 2
A partial packing plot of (I), showing hydrogen bonds as dashed lines.
were reported as 1.474 (2), 1.457 (2) and 1.465 (2) \AA, respectively. The $\mathrm{C} 2-\mathrm{C} 6$ bond $[1.510$ (2) \AA] is longer than the above unconjugated bond length, but in both (III) and (IV) the C2C6 bond distance is 1.481 (2) A. The torsion angles C3-C2-C6-O61 [84.09 (16) ${ }^{\circ}$] and C1-C2-C6-O61 [-91.25 (13) ${ }^{\circ}$] show that the benzoyl group at C 2 is oriented perpendicular to the mean plane through the rest of the molecule ($\mathrm{C} 13-\mathrm{C} 18 / \mathrm{C} 3 /$ $\mathrm{C} 2 / \mathrm{C} 1 / \mathrm{O} 11 / \mathrm{O} 12 / \mathrm{C} 4 / \mathrm{C} 5)$. The dihedral angle between the benzoyl group and the mean plane is $88.31(4)^{\circ}$.

In order to understand the effect of packing on the molecule, an energy minimization calculation was carried out on

Figure 3
Superimposed fit of a molecule of (I) (blue) and its energy-minimized counterpart (red).
the isolated molecule using the WINMOPAC program (Shchepin \& Litivinov, 1998). The superposition (Gans \& Shalloway, 2001) of the fragment of (I) without the phenyl group (C13-C18) with the energy-minimized counterpart (without the phenyl group) gives an r.m.s. deviation of nearly zero, while the superposition of the structure of (I) with its energy-minimized counterpart with the phenyl group (Fig. 3) gives an r.m.s. deviation of $0.717 \AA$. The conformations of the molecules in the crystal structure and in the energy-minimized form are significantly different only in the orientation of the phenyl group. This is evident from the change in the torsion angle from -164.95 (13) to -81.36° for $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 13-\mathrm{C} 18$ and 16.4 (2) to 101.85° for $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 13-\mathrm{C} 14$. This change in torsion angle may be due to the possibility of free rotation of the phenyl group about the $\mathrm{C} 3-\mathrm{C} 13$ bond.

Superposition of the non-H atoms common to the structures of (I) and (II) and (I) and (III) give r.m.s. deviations of 1.811 and $1.743 \AA$, respectively. The crystal packing is stabilized by two weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. Atom C11 acts as a donor for a weak intermolecular C$\mathrm{H} \cdots \mathrm{O}$ interaction (Table 1) with carbonyl atom O61, to form a graph-set motif $C(6)$ (Bernstein et al., 1995). Atom C16 acts as a donor for a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular interaction with atom O 11 of a symmetry-related molecule, which links the molecules into chains to form a graph-set motif $C(9)$. The combination of both of these types of weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions forms a two-dimensional sheet perpendicular to the c axis.

Experimental

A mixture of benzoyl acetate (0.10 mol), benzaldehyde $(0.10 \mathrm{~mol})$, dry ammonium acetate (0.10 mol) and 95% ethanol (50 ml) was stirred with a magnetic stirrer for 5 min and warmed on a hot plate at 333 K for 25 min . The mixture was allowed to stand at 298 K for $2-3 \mathrm{~d}$ until no further crystals separated out. The crystals were filtered off and recrystallized from ethanol (m.p. 361 K , yield 85%).

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{3}$
$M_{r}=280.31$
Monoclinic, $P 2_{1} / n$
$a=10.8099(8) \AA$
$b=7.2746(5) \AA$
$c=18.5285(13) \AA$
$\beta=94.3260(10)^{\circ}$
$V=1452.89(18) \AA^{3}$
$Z=4$

$$
D_{x}=1.281 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$M_{r}=280.31$
Monoclinic, $P 2_{1} / n$
$a=10.8099(8) \AA$
$b=7.2746$ (5) A
$\beta=94.3260(10)^{\circ}$
$Z=4$
Mo K α radiation
Cell parameters from 8602 reflections
$\theta=2.3-27.9^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, colourless
$0.18 \times 0.11 \times 0.09 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD area-
detector diffractometer
ω scans
Absorption correction: none
13392 measured reflections
2557 independent reflections
2297 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-12 \rightarrow 12$
$k=-8 \rightarrow 8$
$l=-22 \rightarrow 22$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0596 P)^{2}\right. \\
\quad+0.2059 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.15 \mathrm{e} \AA^{-3}
\end{gathered}
$$

$S=1.05$
2557 reflections
191 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry ($\AA \mathrm{A}^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C11-H11 \cdots O61 ${ }^{\mathrm{i}}$	0.93	2.57	$3.3911(17)$	148
${\text { C16-H16 } \cdots 11^{\mathrm{ii}}}$	0.93	2.57	$3.3343(16)$	140

[^1]The methyl H atoms were constrained to an ideal geometry ($\mathrm{C}-\mathrm{H}$ $=0.96 \AA)$, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {iso }}(\mathrm{C})$, but were allowed to rotate freely about the $\mathrm{C}-\mathrm{C}$ bond. All other H atoms in the structure were placed in geometrically idealized positions $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA)$ and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {iso }}(\mathrm{C})$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Version 1.64.05; Farrugia, 1999); software used to prepare material for publication: SHELXL97.

One of the authors (RH) thanks the UGC, India, for the award of an FIP fellowship (2005-2007). RH also thanks M. Gopalakrishnan for his help during the synthesis of the compound.

References

Abou-Donia, M. B., Abdel-Rehman, A. A., Kishk, A. M., Walker, D., Markweise, B. J., Acheson, S. K., Reagon, K. E., Swartzwelder, S. \& Jenson, K. F. (2000). J. Toxicol. Health, 59, 97-118.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2001). SAINT (Version 6.28a) and SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gans, J. \& Shalloway, D. (2001). J. Mol. Graphics Modelling, 19, 553-555.
Shchepin, R. \& Litivinov, D. (1998). WINMOPAC. Version 7.21. Perm State University, Perm, Russia. http://www.psu.ru/science/soft/winmopac/index_ ehtml
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sinur, A., Golic, L. \& Stanovnik, B. (1994). Acta Cryst. C50, 1842-1846.
Tanaka, T., Kohno, H., Nomura, E., Taniguchi, H., Tsuno, T. \& Tsuda, H. (2003). Oncology, 64, 166-175.

[^0]: © 2006 International Union of Crystallography All rights reserved

[^1]: Symmetry codes: (i) $x, y-1, z$; (ii) $x-1, y, z$.

